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Summary

The W191G cavity of cytochrome c peroxidase is useful as a model system for introducing small molecule oxid-
ation in an artificially created cavity. A set of small, cyclic, organic cations was previously shown to bind in the
buried, solvent-filled pocket created by the W191G mutation. We docked these ligands and a set of non-binders
in the W191G cavity using AutoDock 3.0. For the ligands, we compared docking predictions with experimentally
determined binding energies and X-ray crystal structure complexes. For the ligands, predicted binding energies
differed from measured values by ± 0.8 kcal/mol. For most ligands, the docking simulation clearly predicted a
single binding mode that matched the crystallographic binding mode within 1.0 Å RMSD. For 2 ligands, where the
docking procedure yielded an ambiguous result, solutions matching the crystallographic result could be obtained
by including an additional crystallographically observed water molecule in the protein model. For the remaining
2 ligands, docking indicated multiple binding modes, consistent with the original electron density, suggesting
disordered binding of these ligands. Visual inspection of the atomic affinity grid maps used in docking calculations
revealed two patches of high affinity for hydrogen bond donating groups. Multiple solutions are predicted as these
two sites compete for polar hydrogens in the ligand during the docking simulation. Ligands could be distinguished,
to some extent, from non-binders using a combination of two trends: predicted binding energy and level of cluster-
ing. In summary, AutoDock 3.0 appears to be useful in predicting key structural and energetic features of ligand
binding in the W191G cavity.

Introduction

Cytochrome c peroxidase is a heme enzyme that cata-
lyzes the oxidation of ferricytochrome c in yeast mi-
tochondria [1, 2]. In contrast to most heme enzymes,
cytochrome c peroxidase has the unusual property that
the second oxidizing potential is stored as a cation
radical on the Trp191 side chain [3–6]. The protein
environment surrounding Trp191 is thought to have
a role in stabilizing the cation radical. Therefore,
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the Trp191 site is an excellent target for engineering
small molecule oxidation [7, 8]. The W191G muta-
tion creates a structurally intact buried polar cavity that
contains five well-ordered structural waters and a po-
tassium ion in place of the Trp191 side chain [9, 10].
The W191G cavity binds small cationic ligands and
can catalyze oxidation of small substrates [7]. A series
of small cationic thiazoles, imidazoles, and pyridines
have been shown to bind in this cavity (Figure 1) [7,
10–12]. In addition to the ligands, a set of non-binders
was discovered during the experimental assessment
of W191G binding specificity. Non-binders included
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Figure 1. The set of ligands docked to the W191G cavity in this study. These compounds were shown in a previous study to bind in the
engineered W191G cavity [7, 11, 43].

small, cyclic, and/or cationic compounds, and thus
were similar to binding ligands (Figure 2).

In the present study, a set of compounds (16
ligands, 17 non-binders) whose interaction with the
W191G cavity was characterized experimentally [11]
was used for docking analysis. The dissociation
free energies of the ligands range from −4.4 to
−6.9 kcal/mol, as measured by following changes in
the heme Soret absorbance [11]. The binding orienta-
tion of each ligand within the cavity was determined
using X-ray crystallography (resolution 1.9 to 2.2 Å)
[11]. Among the ligand-bound structures, there are no
significant deviations in protein structure [10, 11]. In
fact, the only differences amongst ligand-bound struc-
tures are the orientations of the ligands and the number
of waters observed in the cavity. Specifically, cavity
water HOH-308 is observed in all structures with and

without ligand bound, whereas cavity water HOH-401
is displaced by all but three ligands.

W191G presents a rigid protein template that is ex-
perimentally well-characterized [7, 8, 10, 11]. Despite
the rigid template, visual inspection of the unliganded
crystal structure is not sufficient for ligand design or
predicting ligand-binding orientations. These features
make the W191G cavity an excellent model system for
exploring the limits of ligand binding specificity us-
ing automated docking. Automated docking is a useful
tool for predicting ligand binding orientations, binding
affinities [13], and the role of solvent in protein-ligand
interactions [14]. Use of well-characterized model
systems where the results are known can aid in com-
parative molecular field analysis [15, 16]. We chose
the AutoDock 3.0 program to model ligand bind-
ing within the W191G cavity because of the recently
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implemented empirical free energy force field, im-
provements in searching efficiency, and the advantage
of using one set of precomputed atomic affinity maps
to dock numerous ligands [17]. AutoDock 3.0 uses
a Lamarckian genetic algorithm to find the most fa-
vorable ligand binding orientations. The force field,
represented by atomic affinity grid maps computed
prior to ligand docking, is a linear combination of van
der Waals, hydrogen bonding, hydrophobic desolva-
tion, electrostatics, and torsional free energy empir-
ically determined to reproduce ligand-protein binding
free energies [17]. AutoDock has been used to model
diverse protein-ligand interactions including ligand
binding to antibodies [18], diacylglycerol binding to
protein kinase C [19], cofactor binding to nitric ox-
ide synthase [20], factor-Xa-inhibitor complexes [21],
β-amylase substrate binding [22], cannanibinoid re-
ceptor interactions [23], and monosaccharide binding
to glucoamylase [24]. Here we demonstrate the utility
of AutoDock for analyzing ligand binding in a cavity
with broad specificity.

Methods and materials

Preparation of protein coordinate files and grid map
calculations

We constructed two models of the W191G cavity, pro-
tein model A and protein model B, to reflect the two
states of solvent occupancy observed in the ligand-
bound crystal structures. Protein model A contained
cavity water HOH-308, which was observed in all 16
ligand-bound crystal structures. HOH-308 is tightly
hydrogen bonded to the amino group of Gly191, the
carbonyl of Ala176, and the carbonyl of Gly178 in the
ligand-bound and ligand-free states of W191G, and
thus treating it as part of the protein structure was war-
ranted. Protein model B contained HOH-308 and an
additional cavity water, HOH-401, which was present
in three of the ligand-bound crystal structures.

Polar hydrogens, partial charges, and solvation
parameters were added to the W191G protein coordin-
ate files in preparation for computing grid maps. Polar
hydrogens and Kollman united-atom charges [25, 26]
were added to the protein using SYBYL version 6.1
(Sybyl, Tripos Associated, Inc., St. Louis, MO).
Amber potentials were used for the heme [25, 27].
Solvation parameters, based on the Stouten model
[28], were added to the protein file in accordance with
the AutoDock 3.0 force field [29].

Atomic affinity grid maps were computed for each
atom type in the ligand set, as well as an electrostat-
ics grid map, from the protein models using AutoGrid
3.0 and the standard AutoDock 3.0 force field. The
cubic grid maps were centered on the W191G cavity
and had dimensions of 9 × 9 × 9 Å with 0.15 Å spa-
cing between grid points. Protonated nitrogen atoms
in W191G were modeled as non-hydrogen bond ac-
ceptors and assigned the standard 6-12 Lennard-Jones
parameters, rather than 10–12 hydrogen-bond para-
meters. Parameters for the heme iron, which are not
standard to AutoDock 3.0, were taken from Amber
[25, 27] and the well depths multiplied by the Auto-
Dock empirical free energy force field scaling factor
(0.1485) [17].

Preparing ligands and non-binding compounds for
docking

The coordinates of each ligand bound in the cav-
ity were determined crystallographically as described
previously and are deposited in the Protein Data
Bank [9–11]. Non-binding compounds were built and
energy minimized using SYBYL version 6.1. The
chemical structures of the ligands and non-binding
compounds are shown in Figure 1 and Figure 2, re-
spectively. Density functional charges, computed for
each compound, as described elsewhere [30] with
Gaussian94 [31] and the 6-31 and TZ2P basis sets
[32], were added to the coordinate file. The AutoTors
application of the AutoDock program suite was used
to merge nonpolar hydrogens and initialize torsions for
each ligand [33].

Docking compounds using AutoDock 3.0

Ligands and non-binding compounds were first
docked to the protein model containing only cavity
water HOH-308 (protein model A), because this water
was observed in all ligand-bound crystal structures.
Two ligands, 2-aminothiazole and 3-aminopyridine,
were later docked to the protein model containing
HOH-308 and HOH-401 (protein model B). A Lamar-
ckian genetic algorithm was used to search each
ligand’s configuration space for low energy binding
orientations. Lamarckian genetic algorithms are in-
spired by Jean Baptiste de Lamarck’s theory that
phenotype changes that occur during an individual’s
lifetime can be passed on as genetic changes to its
offspring. In AutoDock, the Lamarckian genetic al-
gorithm is implemented by combining a global genetic
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Figure 2. The set of non-binders docked to the W191G cavity in this study. These compounds were classified as ‘non-binders’ based on
previous experimental assessment of W191G ligand-binding specificity [11].
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algorithm with local minimization. For local minim-
ization, AutoDock uses the Solis & Wets adaptive
search algorithm. During local minimization, the step
size increases if the last step improved the binding
energy and decreases if the last step resulted in a
worse binding energy. Each docking trial was initiated
with a randomly generated population of 50 binding
orientations and completed after 1.5 million energy
evaluations had been performed. The point mutation
and crossover rates were set at 2% and 80%, respect-
ively. The probability of performing a local search on
an individual was set at 6%. Due to the stochastic
nature of genetic search algorithms, 100 trials of each
docking were performed. The resulting docked con-
formations were clustered together using an RMSD
tolerance of 0.5 Å. The output files contained the fi-
nal predicted conformations, orientations, positions
and the RMSD from the bound crystal structure, the
docked energy and the estimated free energy of bind-
ing for each cluster and each individual docking. The
free energy was computed as the sum of the docked
energy, the torsional energy, and the intramolecular
interaction energy for the ligand [29]. AutoDock was
run on SGI Power Challenges with R8000 IP21 pro-
cessor chips operating at 90 MHz using IRIX Release
6.2. The docked conformations were visualized in the
AVS graphics program, version 5.02 [34] (Advanced
Visual Systems, Inc., Waltham, MA).

Results and discussion

In order to study ligand recognition in the engin-
eered W191G cavity, we docked 33 compounds to
the cavity using AutoDock 3.0 [17]. The 16 ligands
and 17 non-binders are shown in Figures 1 and 2,
respectively [11]. For most of the ligands, docking
unambiguously reproduced the crystallographic bind-
ing orientation within the protein cavity. AutoDock
predicted the binding affinity of all ligands within the
estimated error of the force field (2.2 kcal/mol). Ini-
tially, all compounds were docked computationally to
the structure of the unliganded protein, with an in-
variant water molecule (HOH-308) included as part of
the protein structure (protein model A). For each com-
pound, 100 docking experiments were initiated with
randomized populations and solutions for individual
runs were clustered if their final docked positions were
within a tolerance of 0.5 Å RMSD.

Successful prediction of single ligand binding modes

Convergence of dockings into a common conforma-
tional cluster was a major indicator that the cluster
matched the crystallographic ligand-binding orienta-
tion (Table 1). In 12 of 16 cases, the results were clear
and unambiguous (e.g. 2,3,4-trimethylthiazole, Fig-
ure 3), often docking to one single converged cluster.
For all 12 of these ligands, at least 90% of the docked
conformations were within a single dominant cluster.
These highly populated clusters corresponded closely
to the crystallographically determined positions, hav-
ing RMS differences from the crystal structure ranging
from 0.2 Å to 0.8 Å.

Effect of crystallographically observed waters in
docking

Four of the known ligands (2-aminothiazole, 3-
aminopyridine, 4-aminopyridine and imidazole) gave
more ambiguous results, with docked solutions clus-
tering into several (3 to 5) different conformations
with similar energies (Tables 2 and 3). We hypothes-
ized that these multiple clusters have two possible
explanations: (i) different conformations may result
from variations in cavity solvent in the ligand bound
structures that were not accounted for in the Auto-
Dock simulation; or (ii) the different conformations
may reflect actual disorder present in the complex.
For 2-aminothiazole and 3-aminopyridine, case (i)
clearly applies, as the ligand-bound crystal structures
of these complexes showed density for an additional
cavity water molecule (HOH-401). Docking results
for these two ligands became consistent with the crys-
tallographic structures when HOH-401 was included
as part of the protein structure (protein model B)
(Table 2, Figure 4). The complex with aniline also
showed strong electron density for HOH-401, but in
this case, AutoDock predicted the proper conforma-
tion in all 100 dockings because the size of the aniline
excluded it from docking in a position such that the
amino group could satisfy the hydrogen bonds made
by HOH-401.

Water plays an important role in many protein-
ligand interactions [35–39]. In some cases, water
mediated ligand recognition can be modeled by pre-
dicting conserved waters in a ligand binding site
[40], predicting potential water positions [36], hydrat-
ing the ligand [35], or using a weighted average of
multiple target structures [41]. Computational tools,
such as Consolv [40], predict conserved waters in
a binding site based upon hydrogen-bond analysis,
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Figure 3. Example of single binding mode successfully predicted by AutoDock. (A) The crystallographic binding orientation of 2,3,4-tri-
methylthiazole fit into Fo-Fc omit electron density (white contours 3σ, magenta contours 10σ). (B) Comparison of the predicted (magenta) and
crystallographic (white carbon atoms) orientations of 2,3,4-trimethylthizole in the W191G cavity. A single cluster 0.5 Å RMSD away from the
assigned crystal orientation was predicted by 100 docking trials.

Table 1. Clustering analysis of ligands with single binding modes. For each ligand, the most populated cluster predicted by
AutoDock is within 0.8 Å RMSD from the crystallographically determined orientation. The maximum difference between
predicted and experimental binding energies is 1.4 kcal/mol. The average absolute difference between predicted and measured
binding affinities is ± 0.8 kcal/mol.

Ligand Cluster Cluster Binding free energy (kcal/mol) RMSD PDB code

population Predicted Measured Predicted – (Å) [11, 43]

[11] measured

Aniline 1 100 −5.8 −6.2 0.4 0.5 1AEE

2-Aminopyridine 1 100 −5.8 −5.7 −0.1 0.3 1AEO

2,3,4-Trimethylthiazole 1 100 −5.0 −4.4 −1.4 0.5 1AC4

3,4,5-Trimethylthiazole 1 100 −5.0 −5.3 0.3 0.2 1AC8

2-Methylimidazole 1 100 −4.9 −5.7 0.8 0.7 1AEU

2-Ethylimidazole 1 100 −5.4 −4.2 −1.2 0.3 1AEQ

3-Methylthiazole 1
2

99
1

−4.5
−4.5

−5.4 0.9 0.8
2.5

1AEB

1,2-Dimethylimidazole 1
2

99
1

−5.3
−5.3

−6.0 0.7 0.4
1.5

1CMP

2-Amino-5-methylthiazole 1
2

99
1

−5.6
−5.6

−6.9 1.3 0.3
1.4

1AEN

2-Amino-4-methylthiazole 1
2

4
96

−5.3
−5.2

−4.9 −0.4 3.1
0.6

1AEH

3,4-Dimethylthiazole 1
2

90
10

−5.0
−5.0

−5.7 0.7 0.2
2.4

1AED

1-Vinylimidazole 1
2
3

90
2
8

−4.5
−4.5
−4.5

−5.3 0.8 0.6
0.9
2.5

1AEJ

crystallographic B-factors, and solvent-accessible sur-
face area of water molecules in a protein crystal
structure. Similar factors were used to analyze con-
served waters in major histocompatibility complex

structures [37]. In the W191G cavity all five crys-
tallographic waters have low B-factors and are in
a tight hydrogen-bonding network, and thus are all
predicted to be conserved. Therefore, our ability to
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Figure 4. Structural waters influence docking results. (A) Crystal structure of 2-aminothiazole fit into the Fo-Fc omit electron density in the
W191G cavity (white contours 3σ, red contours 6σ). (B) Docking 2-aminothiazole to W191G protein model A, without explicitly including
HOH-401 results in multiple clusters in which the amino group docks to the position occupied by HOH-401. The top two clusters (magenta) are
superimposed onto the crystallographically observed orientation (white carbon atoms). (C) 2-Aminothiazole docked to protein model B, a model
that explicitly includes structural water HOH-401. The docked prediction (magenta) matches the crystallographically observed orientation of
2-aminothiazole. One cluster was predicted that contained 100 dockings with an RMSD of 0.8 Å.

include conserved water molecules based on superpos-
ition of ligand-bound structures was useful. Ideally,
methods that account for changes in solvent molecules
will be implemented in future versions of AutoDock.
For instance, it should be possible to adapt Auto-
Dock 4.0, which is currently being developed to
model protein side-chain flexibility [42], to model
solvent flexibility (http://www.scripps.edu/pub/olson-
web/doc/autodock).

Multiple binding modes predicted by multiple clusters
of solutions

The remaining two multi-conformational docking res-
ults could not be explained by changes in solvent occu-
pation, and we postulated that these multiple clusters
reflected actual disordered ligand binding within the
cavity. Three clusters are found for 4-aminopyridine
(Table 3, Figure 5), which align the two hydrogen-
bonding groups of the ligand towards two different
sites within the cavity. In the top 2 clusters, the
amino group is oriented to form a hydrogen bond
with Asp235, and the ring nitrogen is directed towards
the carbonyl of Leu177. In cluster three (as sorted
by increasing energy), the ligand is oriented so that
the amino group hydrogen bonds with the Leu177
carbonyl and the ring nitrogen hydrogen bonds with
Asp235. In this case, re-examination of the experi-
mental electron density maps revealed that disorder is
evident in this structure. A similar result is observed
with the imidazole-bound complex. Imidazole and
4-aminopyridine are roughly symmetrical molecules,

with two similar hydrogen-bonding groups arranged
on opposite sides. Multiple docked orientations are
found as two sites in the cavity vie for the pseudo-
symmetrical hydrogen bonding groups. In this case,
the multiple orientations could not be verified in the
experimental structure due to the symmetry of the
ligand.

These docking results, when analyzed together
with the electron density maps, suggest that AutoDock
simulations may be capable of predicting multiple
binding orientations. Similar results have been repor-
ted from studies using AutoDock to analyze inhibitors
binding to nitric oxide synthase [42]. Therefore, Auto-
Dock may have an important unanticipated utility:
the ability to identify and validate multiple binding
orientations. AutoDock was not trained to recognize
multiple energetically similar binding modes per se,
but has this capability as a consequence of modeling
the binding landscape using its empirical free energy
force field. In the nitric oxide synthase study, dual ori-
entations predicted by AutoDock were used to support
crystallographic assignment of a dual binding mode
for a nitroindazole-class inhibitor [42]. Understanding
the dual binding mode was important in developing a
general model for molecular recognition of this class
of compounds in the nitric oxide synthase active site.
In both the nitric oxide synthase study and in our study
of W191G ligands, the prediction of multiple binding
orientations by AutoDock augmented the crystallo-
graphic analysis and provided new understanding of
the ligand binding sites.
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Table 2. Results of docking ligands that hydrogen bond with HOH-401 to protein models with and without HOH-401 explicitly included.

Ligand Protein model Aa Protein model Bb Measured Predicted – PDB

Cluster Cluster Predicted RMSD Cluster Cluster Predicted RMSD binding measured [7, 11]

population binding (Å) population binding (Å) energy binding

energy energy [7, 11] energy

(kcal/mol) (kcal/mol) (kcal/mol)

3-Aminopyridine 1 34 −5.4 1.7 1 100 −5.3 0.6 −5.7 0.4 1AEF

2 26 −5.4 1.3

3 2 −5.3 1.7

4 5 −5.2 1.5

5 33 −5.0 0.6

2-Aminothiazole 1 64 −5.1 2.3 1 100 −6.7 0.8 −0.6 −0.7 1AEV

2 28 −4.8 2.3

3 3 −4.5 1.7

4 4 −4.4 2.0

5 1 −4.4 2.4

aProtein model A explicitly includes cavity water HOH-308 only.
bProtein model B explicitly includes both cavity waters HOH-308 and HOH-401.

Table 3. AutoDock predicts multiple clusters for ligands that have multiple binding modes. These two ligands have symmetrical
hydrogen bond donating groups that dock interchangeably towards hydrogen bond acceptors at opposite ends of the W191G cavity.
Electron density supports multiple binding modes for these ligands. The RMSD is calculated using the crystallographic orientation
that was initially fit based on electron density and analysis of hydrogen bonding interactions.

Ligand Cluster Cluster Binding free energy (kcal/mol) RMSD PDB code

population Predicted Measured
[11]

Predicted –
measured

(Å) [11]

Imidazole 1
2
3
4

55
35

3
7

−4.0
−4.0
−3.9
−3.9

−5.7 1.7 1.0
2.3
0.7
1.8

1AES

4-Aminopyridine 1
2
3

21
77

2

−5.4
−5.2
−5.2

−5.9 0.5 1.2
0.3
1.0

1AEG

Calculated binding energies agree with
experimentally measured values

Accurate prediction of binding affinities is an import-
ant goal of automated docking and is particularly rel-
evant to rational drug design. For this set of 16 ligands,
the average difference between the predicted binding
energy of the most populated cluster and measured
binding affinity is ± 0.8 kcal/mol (Tables 1–3). This
is less than the reported residual standard error for
the AutoDock 3.0 force field (2.2 kcal/mol), indic-
ating good overall agreement of the results with the
previously calibrated force field. The range in bind-
ing affinity of these ligands is only 2.5 kcal/mol, thus
the binding energies are expected to be roughly equiv-

alent within the AutoDock force field. In fact, the
average binding energy computed by AutoDock (5.1
± 0.5 kcal/mol) was remarkably similar to the aver-
age measured binding energy (5.6 ± 0.7 kcal/mol) for
these ligands.

A rank ordering based on predicted binding energy
is not realistic for this set of compounds because of the
narrow range of binding affinities and the uncertainty
in predicted values. Despite the low correlation, the
strongest binding ligand in this series, according to
in vitro experiments, 2-amino-5-methylthiazole, was
predicted to be one of the strongest binders by dock-
ing. Only 2-aminopyridine and aniline were predicted
to have a higher absolute affinity and were predicted
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Figure 5. Multiple conformations predicted by AutoDock. (Left) A single crystallographic binding orientation was assigned for 4-aminopyrid-
ine, however, the elongated shape of the electron density suggests additional binding modes. (Right) Three clusters of binding orientations
were predicted for 4-aminopyridine (cyan, magenta, yellow, in order of least to highest predicted energy), which may account for the observed
electron density. The three predicted orientations for 4-aminopyridine satisfy hydrogen bonds to Asp235 and Leu177.

to bind only 0.2 kcal/mol more tightly. While Auto-
Dock cannot be used to rank this particular series of
chemically similar ligands by binding affinity, the res-
ults show promise that such a rank ordering might
be possible given a larger spread in binding affinities.
These results therefore support the utility of Auto-
Dock being useful in distinguishing between ligand
dissociation constants that differ by about two orders
of magnitude (roughly equivalent to 1–2 kcal/mol of
binding energy).

Binding and non-binding compounds can be
distinguished by predicted energy and clustering

Predicting which compounds from a set of potential
ligands will bind in an active site is one of the preem-
inent challenges in computer aided drug discovery. In
addition to ligand binding data for W191G, we had an
available database of 17 compounds for which specific
binding to the W191G cavity was not detected exper-
imentally (Figure 2). The non-binders are compounds
that were designed and screened for binding during
the initial efforts to assess the specificity of W191G,
and therefore resemble the binders. The non-binders
included compounds that are small, planar, positively
charged and/or aromatic, and thus are not precluded
from binding simply based on size and shape. To see if
AutoDock could distinguish between binders and non-

binders, we docked both sets to W191G protein model
A and compared the results.

We found that two outputs from docking help to
discriminate W191G binders from non-binders: (i)
small number of clusters; and (ii) low predicted bind-
ing energy (Table 4). Of these two trends, clustering
was the stronger indicator of ligand binding. Most
of the W191G binders dock to only 1–2 converged
clusters, whereas most non-binders docked into 5 or
more clusters. Even binders with multiple orienta-
tions and those that bind protein model B dock to
protein model A in fewer clusters (3–5) than most
non-binders. Second, in contrast to most of the non-
binders, most binders have a predicted binding energy
less than −4.5 kcal/mol. Neither of the criteria alone
is sufficient, but the combination of clustering and
predicted energy appears to discriminate binders from
non-binders. Note that classification of an individual
compound as a binder or non-binder may be hindered
by the relative uncertainty in predicted binding energy.
However, overall there are significant statistical differ-
ences in docking results for the two sets of compounds
(p < 0.001). Our results suggest that the AutoDock
force field is on the cusp of discriminating weak bind-
ers from similar compounds that do not bind in the
cavity. The ability to identify binders may be improved
by empirically fitting the force field for a specific case
of interest. Also, a test set containing binders with
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Table 4. Results of docking binders and non-binders to W191G (protein model A). The overall docking statistics for
binders and non-binders differed significantly, both in terms of clustering (p < 0.001) and predicted binding energy
(p < 0.001).

Compound Number of clusters Avg. predicted energy Clusters + docked energy

(100 dockings) (kcal/mol)

BINDERS

2-Aminopyridine 1 −5.8 −4.8

Aniline∗ 1 −5.8 −4.8

2-Ethylimidazole 1 −5.4 −4.4

2,3,4-Trimethylthiazole 1 −5.0 −4.0

3,4,5-Trimethylthiazole 1 −5.0 −4.0

2-Methylimidazole 1 −4.9 −3.9

2-Amino-5-methylthiazole 2 −5.6 −3.6

2-Amino-4-methylthiazole 2 −5.4 −3.4

1,2-Dimethylimidazole 2 −5.3 −3.3

3,4-Dimethylthiazole 2 −5.0 −3.0

1-Vinylimidazole 2 −4.5 −2.5

3-Methylthiazole 2 −4.5 −2.5

4-Aminopyridine† 3 −5.2 −2.2

3-Aminopyridine∗ 5 −5.3 −0.3

Imidazole† 4 −4.0 0

2-Aminothiazole∗ 5 −5.0 0

Average 2 ± 1 −5.1 ± 0.5 −3 ± 2

Median 2 −5.1 −3.3

NON-BINDERS

Dimethylammonium 3 −3.0 0

Methylammonium 3 −2.6 0.4

Pyrazole 4 −3.2 0.8

3-Cyanopyridine 5 −4.2 0.8

2-Mercaptopyrimidine 6 −3.9 2.1

Indazole 7 −4.6 2.4

Trimethylammonium 6 −3.1 2.9

3-Aminopyrazole 7 −4.0 3.0

Pyralinium 8 −4.9 3.1

Tetrazole 6 −2.3 3.7

Anthranitrile 9 −4.1 4.9

5-Amino-4-pyrazole-carbonitrile 10 −4.0 6.0

Mercaptoimidazole 11 −3.5 7.5

4-Amino-5-imidazole-carboxamide 13 −4.1 8.9

Isoniazide 12 −1.3 10.7

Mesidinium 12 −0.7 11.3

Histamine 28 −5.7 22.3

Averagea 9 ± 6 −3 ± 1 +5 ± 6

Averageb 8 ± 3 −3 ± 1 +4 ± 4

Mediana 7 −3.7 +3.6

aCalculated using all non-binders.
bCalculated without histamine (outlier).
∗Ligand does not displace HOH-401.
†Ligand has multiple binding orientations.
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a large range of affinities would be advantageous for
making statistical comparisons. This docking study
provides an important benchmark illustrating the ‘lim-
its of detection’ for modeling ligand recognition using
the current version of AutoDock.

Conclusions

The W191G cavity is an engineered binding site
that binds and can oxidize small cyclic compounds.
W191G represents a nascent active site: removal of
the Trp191 side chain created a binding cavity, but
substrate-binding specificity has not yet evolved. In
spite of the low specificity of the W191G cavity, il-
lustrated by the small range of binding affinities for
many different ligands, it is remarkable that AutoDock
is able to predict correct ligand orientations for a ma-
jority of the cases tested. AutoDock 3.0 reproduced
binding orientations within 1.0 Å RMSD and binding
energies within ± 0.8 kcal/mol. AutoDock captures
the subtle features of binding in the cavity and dis-
tinguishes between ligands with single and multiple
orientations. A high degree of clustering appears to be
associated with correct predictions of single binding
modes by AutoDock. Multiple modes were predicted
either when the binding site waters were not explicitly
included or when there was experimental evidence
of multiple binding modes. In the cases where bind-
ing site waters varied, AutoDock correctly predicted
the binding orientation when the binding site waters
were explicitly included in the docking model. The
prediction of multiple binding modes by AutoDock
is an unanticipated utility that may enhance crystal-
lographic analysis of disordered binding. Finally, we
found trends in the level of clustering and predicted
binding energy help to distinguish ligands from non-
binders. This approach should prove useful for future
design and evaluation of ligand binding in engineered
protein active sites.
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